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Abstract—Results from a field demonstration of au-
tonomous detection, localization, and verification of mul-
tiple acoustic events using sparsely deployed unattended
ground sensors, unmanned aerial vehicles (UAV) as data
mules, and a ground control interface are discussed. A
novel algorithm is demonstrated to address the problem of
multiple event acoustic source localization in the presence
of false and missed detections. We also demonstrate an
algorithm to route a UAV equipped with a radio to collect
data from sparsely deployed ground sensors that takes
advantage of communication range of the aircraft while
adhering to kinematic constraints of the UAV. A second
UAV was utilized to provide video verification of localized
events to a human operator at a ground control station.

I. INTRODUCTION

Monitoring large areas and localizing events of interest
is a fundamental problem with a variety of applications
such as homeland security and environmental studies.
Typically, localizing an event requires information from
only a few sensors: for example, we can localize a source
if we have access to the time of arrival (ToA) information
from three sensors. However, gathering information from
spatially dispersed sensors poses a significant challenge.
When the sensors are placed on the ground and do not
have line-of-sight links to one another, their communica-
tion range is drastically reduced, leading to disconnected
networks with sparse sensor deployments. One approach
to this problem is to overdeploy sensors by increasing
the sensor density until the network becomes connected
and the sensors can exchange information via multihop
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Fig. 1. Schematic of the system used in the demonstration.

networking. However, this approach does not scale well.
When monitoring large regions, it would lead to an ex-
traordinarily large number of sensors, which is expensive
and not fundamentally necessary for the purpose of
event localization. We explore an alternative approach
to alleviate this issue by considering a deployment with
“just enough” sensors to localize the sources of interest,
leading to a disconnected network. We then use an
Unmanned Aerial Vehicle (UAV) as a data mule to gather
data from the different sensors and make inferences
regarding the event locations on the fly. In this paper,
we validate this architecture by presenting results from
a field demonstration where we localize multiple acoustic
sources using ToA sensors and a mule-UAV whose route
is optimized to quickly gather data.
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A schematic of the system used in the deployment is
shown in Figure 1. We deploy six ToA sensors over a
region that is roughly 1.3 km × 0.5 km in size. We use
GPS receivers at each sensor to estimate their locations
and synchronize them in time. Two propane cannons that
have acoustic characteristics similar to artillery are fired
randomly and potentially close to one another in time.
A UAV flies a traveling salesman tour over the sensors,
gathering ToAs and inferring possible event locations.
When the inference algorithm has sufficient confidence in
a candidate event, it dispatches a second UAV, fitted with
a gimbaled camera, to fly over the estimated location and
image the source. The data gathering and event imaging
is done continuously, with the events being imaged on a
first come first served basis.

There are two key technical challenges that we had
to solve in the process of demonstrating the proposed
system; (a) The propagation delays from different events
to a sensor are different. Therefore, when multiple events
happen close to one another in time, the varying propa-
gation delays can cause the events to arrive in different
orders at the sensors. Consequently, simple rules to
group the ToAs from an event at different sensors, such
as sorting the ToAs in ascending order and picking the
ith ToA from each sensor to localize the ith event, fail.
Trying all possible ToA groupings might work but is too
complex: with E events and N sensors, we need to
try EN combinations. (b) The problem of planning the
shortest path for a UAV to visit a set of ground sensors
is combinatorial in nature. Most existing solutions make
simplifying assumptions about UAV kinematics and thus
often times result in planned paths that are difficult if not
impossible for the UAV to follow. Additionally, most path
planning solutions treat sensors as points in space and
fail to take advantage of regions where ground sensor to
UAV communication is possible.

We solve the problem of localizing multiple closely
spaced(in time) events by parallelizing the evidence:
we hypothesize discrete times at which events occur,
allowing us to generate a small set of event candidates.
We then choose a subset of the candidates that best
explains the observations at the different sensors in an
efficient manner by solving a matching problem on a
graph. We use a sampling based method to solve the
mule-UAV path planning problem. Sample UAV poses
are used to generate a Generalized Traveling Salesman
Problem (GTPS) on a directed graph, and a series of
graph transformations are used to convert the GTSP to
an Asymmetric TSP. During the demonstration, we found
that events were quickly localized with little spatial error
(within 15m and within 3 min after their occurrence),
thereby illustrating the efficiency, robustness, and low-
complexity of the algorithms.
Related Work: There is a rich body of work on source
localization which is surveyed in [1]. Most of this research
is restricted to the case when there is a single event

and therefore, cannot be used in our deployment with
multiple cannons. However, there is one exception: [2]
develops an algorithm for localizing multiple events from
their ToAs at different sensors. But this algorithm does not
account for all the constraints of the localization problem
and can, therefore, return more events than the number
that actually occurred.

Acoustic sensor networks have been used in previous
localization applications [2], [3]. In [2] a network of ToA
sensors detect and localize a sniper based on the muzzle
blast and shock wave. However, the nodes in [2] are
deployed densely on a smaller spatial scale, so that they
can form a connected network to exchange data thus
avoiding the need for a data mule. A data mule architec-
ture to transport data in a disconnected sensor network
was proposed, and scaling laws for this setting were
investigated in [4] and in several other papers on delay-
tolerant networking, including [5]–[7]. The DTSPN for the
data mule UAV seeks to combine the Dubins Traveling
Salesman Problem [8] with the Traveling Salesman with
Neighborhoods Problem [9]. The path planning algorithm
used to address the DTSPN for the UAV data mule is
most similar to the sampling based method from [10].

We considered similar sparse acoustic sensor network
deployments in [3], [11]. The focus there was on UAV
routing algorithms that balance the information gathered
and the time taken along any route. However, this work
focused on the problem of localizing events sufficiently
separated in time, and the routing algorithm did not
account for the kinematic constraints associated with
UAVs. The algorithms that we explain briefly in this paper
are explained in much more detail in [12]–[14], but the
results there are restricted to simulations and do not
include any details of the experiments that are the focus
of this paper.
Hardware description: We used two Zon Mark IV
propane cannons to create acoustic events that were
similar to live artillery. We used an omnidirectional Sam-
son C03 microphone to record the cannon shots and a
Dell Latitude E5500 laptop to process the recordings. The
processing involved matched filtering the data against a
pre-recorded template of a cannon shot to estimate ToAs
at the sensors. The laptop was interfaced to a Garmin
18-LVC GPS to provide us with the sensor’s location and
ensure time-synchronization across the network. Finally,
each laptop was connected to a Microhard radio to
forward the ToAs to the mule-UAV. Two Procerus Unicorn
UAVs were used with different payloads. The imaging-
UAV was equipped with a gimbaled camera. The mule-
UAV forwarded the ToAs to the base-station which ran the
multiple event localization algorithm and instructed the
imaging-UAV to fly to estimated event positions for visual
verification. We describe the hardware components in
more detail in [3].
Organization: The remainder of the paper is organized
as follows. We describe the system model and describe



an algorithm to address multiple event localization in
Section II. In Section III, the Dubins Traveling Salesman
Problem with Neighborhoods is described and a path
planning algorithm is described that is particularly useful
when the regions overlap. We present results from a field
test in Section IV and conclude in Section V.

II. MULTIPLE EVENT LOCALIZATION ALGORITHM

We begin by providing an overview of the algorithm
described in [12], [13] and then explain the modifica-
tions needed for the demonstration. Suppose that E
events occur over a time window [0, T ] and produce
ToAs at N sensors. The ToA produced by the eth event,
parametrized by its time of occurrence te and spatial
location ϕe, at sensor s is given by

τ(e↔ s) = te + ‖ϕe − θs‖+ n (1)

where θs is the location of sensor s and n is the
measurement noise, distributed as N(0, σ2). For each
event, a sensor makes a measurement of this form with
probability 1− pmiss and completely misses it with prob-
ability pmiss. Additionally, each sensor also makes outlier
ToA measurements, produced by “small-scale” events
(say, a slamming car door). Such small-scale events
are heard only at one sensor and therefore, cannot be
localized. However, we must take care to discard outlier
measurements while estimating event locations.

There are two key ideas behind the algorithm: first, we
quickly narrow down the set of candidate events by using
some, but not all, constraints of the problem. We then
exploit the reduction in the number of candidates to use
the remaining constraints and pick out the true events
from the candidate list in a principled fashion. We explain
the algorithm briefly.
Stage 1: If an event that occurred at time u produces a
ToA τ at sensor s, the event location ϕ is constrained to
a circle (neglecting measurement noise):

‖ϕ− θs‖ = τ − u.
Therefore, if we hypothesize that the ith ToA at sensor s
and the jth ToA at sensor s′ are produced by the same
event that occurred at time u, the event location ϕ must
lie at the intersection of the circles

‖ϕ− θs‖ = τs(i)− u and ‖ϕ− θs′‖ = τs′(j)− u.
The points of intersection of two circles are extremely
easy to compute and can, in fact, be specified in
closed-form. Thus, by hypothesizing discrete event times
(. . . ,−2ε,−ε, 0, ε, 2ε, . . .) and considering different pairs of
ToAs, we can quickly generate candidate events.

The geometry of this processing for a hypothesized
event time u is shown in Figure 2. We generate candi-
dates close to actual event locations by intersecting cir-
cles corresponding to ToAs produced by the same event
(say, red event). In this example, one such candidate is
denoted by Ê . However, we also generate a number of

“phantom” candidates (no event occurred there) by inter-
secting circles corresponding to different events (p2, p3, p6

and p7) or by intersecting circles belonging to the same
event, but with a wrong hypothesized time (for example,
if the green event does not occur at u, then p4 and p5

are phantoms). The goal of the rest of the algorithm is
to discard the phantoms using measurements at all the
sensors and only retain the true events.
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Fig. 2. Two events “red” and “green” that produce ToAs at sensors
s, s′, s1, s2, s3, s4. The red event produces ToAs {τs(1), τs′ (2)} at
sensors s and s′ and the green event produces ToAs {τs(2), τs′ (1)}.
We hypothesize an event time u and draw circles corresponding to the
different ToAs. The time at which the red event occurred is close to u
and hence we obtain an estimate of the red event location Ê . However,
we also generate phantom estimates p1 − p7

We do this in multiple steps. First, we discard “obvious”
phantoms by developing a statistical goodness metric for
each event and discarding events whose goodness falls
below a threshold. We also merge “duplicate” candidates
to further prune the overcomplete set. We omit a descrip-
tion of these stages here and refer to [12], [13] for more
details. After Stage 1, we have event estimates and non-
obvious phantoms (candidate events which did not occur
but can be explained by some observations) in the list of
candidates.
Stage 2: The candidates in Stage 1 are obtained by
intersecting circles drawn at a pair of sensors and do not
use the information available at the otherN−2 sensors. In
Stage 2, we refine each estimate, in an iterative fashion,
by using the ToAs from all the sensors. We refer to
[12], [13] for more details. At the end of this stage, the
estimates of the events are near-perfect, but the list of
candidates still includes non-obvious phantoms.
Stage 3: We prune the remaining phantoms using a
variant of the matching problem on a bipartite graph,
where we pair a subset of the candidate events with the
observations at the different sensors. We need to make
two sets of decisions: (a) for each event in the overcom-
plete set, we need to decide whether it truly happened or
if it is a phantom. An example of such decisions is shown
in Figure 3, where the events that we declared to have
occurred are shown in green and the ones we declare
to be phantoms are shown in red. (b) We then establish
a correspondence between the chosen events and the



E1 E2 E3 E4 E5 E6 Outlier

Ω1
Ω2 Ω3 Ω4

M1

M2

M3

M4

Fig. 3. Events at the output of stage 2 are shown as blue circles
in the first row. The observations are denoted by blue stars, with
the observations at each sensor arranged in a column. Green circles
represent events that we declared to have occurred and red circles
denote phantom events. We need to draw edges between the picked
events and the observations, subject to constraints, so as to minimize
the costs of the edges.

observations (which event produced which ToA?) subject
to two types of constraints: Event node constraints: At
each sensor, an event that occurred must produce an
observation or must be missed. Thus, exactly one of the
black edges that connect E3 to the observations at sensor
1 or the miss node M1 must be “active”. Observation
node constraints: Each observation must be produced by
a picked event or must be an outlier. Thus, exactly one
of the pink edges that connect the observation at sensor
2 to events/outliers must be active.
Activating an edge comes with a cost: for example, the
cost of declaring an event to be missed at any sensor
is log pmiss. The costs of other edges can be specified
in a similar fashion, and we refer to [12], [13] for more
details. All the decisions made in this process are binary
valued. Thus, the overall problem can be specified as
a binary integer program (maximize a linear objective
function where the decision variables are all either 0 or
1). Since solving a binary integer program has prohibitive
complexity, we relax the problem and solve it as linear
program (variables can take any value between 0 and
1). Typically, we find that, even with the relaxation, the
decision variables only take the values 0 or 1 with a large
enough sensor deployment.
Modifications for the demonstration: The algorithm
presented above makes two simplifying assumptions that
need to be removed before we can use it in the proposed
system. First, it assumes that we have access to all the
the measurements from all the sensors before we start
attempting localization. This does not hold when the UAV
picks up ToAs sequentially: at any given time, we only
have access to the ToAs produced by an event from those
sensors that the UAV has visited after the event occurred
(+ propagation delay). Second, it assumes that the ToAs
produced by events from the window [0, T ] have been
separated from the rest of the ToAs. In practice, events
occur continuously, and it is unclear how to split the ToAs
in this fashion (was a ToA T + h, h > 0 produced by an

event in [0, T ] with a “large” propagation delay or by one
in [T, 2T ] with a smaller delay?).

We solve both of these problems by keeping track of
the last time at which the UAV visited each of the sensors.
When the current time is t, let Ti(t) denote the last time
when the UAV was within the radio range of sensor i
(Ti(t) ≤ t). To avoid penalizing events, some of whose
ToAs have not been collected, we add an “Early” node at
each sensor to the graph in Figure 3 (not shown). Let Ei
denote the early node at sensor i. For a candidate event
(ϕ, u), denote its expected ToA at sensor i as τi = u +
‖ϕ−θi‖. If Ti(t) < τi, we assign a very small cost (close
to zero) to the edge between the event and the early node
Ei. Thus, the event can be explained by activating the
edge to Ei without paying a penalty. However, if Ti(t) >
τi, the UAV has picked up all the available information
about the event, and the edge connecting the event to
Ei should not be necessary. In this case, we assign a
large cost to the edge to ensure that it will not be used.

For the algorithm to operate in a continuous fashion,
we retain a ToA and consider it for processing until
we are certain that either (a) we have gathered all the
information about an event that produced it, or (b) it is an
outlier. Suppose that the LP activates the edge between
a candidate event (ϕ, u) and the ToA τ at sensor i.
We check if the UAV has visited every sensor after the
predicted ToA due to (ϕ, u) at each of these sensors. If
so, we do not consider the ToA τ for further processing.
If not, there is more information to be gathered, and we
retain τ for use in further processing. If τ is an outlier
ToA, the LP will not associate any candidate event with
it. We purge it as follows: if the UAV has visited all of the
sensors after τ + D/c, where D is the diameter of the
deployment region, and the LP still does not associate
the ToA τ to any candidate, it must be an outlier and can
be removed from further consideration.

III. UAV PATH PLANNING

The acoustic unattended ground sensors are capable
of detecting events at much greater distances than they
can communicate with low power radios. A UAV is used
to collect measurements from a sparse deployment of
acoustic sensors. The algorithm used for UAV path plan-
ning is largely based on the one described in [14]. We first
describe the assumptions and ideas behind the algorithm
in [14] and then explain the modifications required for the
real-time demonstration.

The kinematics of the UAV can be approximated by
the Dubins vehicle in the plane. The pose of the Dubins
vehicle X can be represented by the triplet (x, y, θ) ∈
SE(2), where (x, y) ∈ R2 define the position of the vehicle
in the plane and θ ∈ S1 defines the heading of the vehicle.
The vehicle kinematics are then written as,ẋẏ

θ̇

 =

ν cos(θ)
ν sin(θ)

ν
ρu

 , (2)



where ν is the forward speed of the vehicle, ρ is the
minimum turning radius, and u ∈ [−1, 1] is the bounded
control input. Let Cρ : SE(2)×SE(2)→ R+ associate the
length Cρ(X1,X2) of the minimum length path from an
initial pose X1 of the Dubins vehicle to a final pose X2,
subject to the kinematic constraints in (2). This length,
which we will refer to as the Dubins distance from X1 to
X2, can be computed in constant time [15].

LetR = {R1,R2, ...,Rn} be a set of n compact regions
in a compact region Q ⊂ R2, and let Σ = (σ1, σ2, . . . , σn)
be an ordered permutation of {1, . . . , n}. Define a pro-
jection from SE(2) to R2 as P : SE(2) → R2, i.e.
P(X) =

[
x y

]T , and let Pi be a point in SE(2) whose
projection lies in Ri. We denote the vector created by
stacking all n configurations Pi as P ∈ SE(2)n.

The DTSPN involves finding the minimum length tour
in which the Dubins vehicle visits each region in R
while obeying the kinematic constraints of (2). This is
an optimization over all possible permutations Σ and
configurations P. Stated more formally:

Problem 3.1 (DTSPN):

minimize
Σ,P

Cρ(Pσn
,Pσ1) +

n−1∑
i=1

Cρ(Pσi
,Pσi+1)

subject to P(Pi) ∈ Ri, i = 1, . . . , n.

We present an algorithm to address this problem which
involves generating a set of m ≥ n sample configurations
Si ∈ SE(2), S := {S1, . . . ,Sm} such that

P(Sk) ∈
n⋃
i=1

Ri, k = 1, . . . ,m, (3)

and ∀i ∃k s.t. P(Sk) ∈ Ri. The algorithm approximates
Problem 3.1 by finding the best sample configurations
P ⊆ S and the order Σ in which to visit them.

Problem 3.2 (Sampled DTSPN):

minimize
Σ,P

Cρ(Pσn ,Pσ1) +
n−1∑
i=1

Cρ(Pσi ,Pσi+1)

subject to Pi ∈ S
P(Pi) ∈ Ri, i = 1, . . . , n.

Problem 3.2 can now be converted to a Generalized
Traveling Salesman Problem (GTSP) with overlapping
nodesets by sampling regions R with a finite set of
m Dubins vehicle configurations S. The GTSP is then
transformed into a standard TSP through the Noon and
Bean transformation [16]. To solve for the tours we used
the symmetric TSP solver linkern available at [17], which
uses the Chained Lin-Kernighan Heuristic from [18].

The GTSP can be described with a directed graph with
nodes N and arcs A where the nodes are members of
predefined nodesets V. Here each node represents a

sample pose from S, and the arc connecting node Si
to node Sj represents the length of the minimum length
path for a Dubins vehicle ci,j = Cρ(Si,Sj) from pose
Si to pose Sj . The nodeset Vk corresponding to region
Rk contains all samples whose projections lie in Rk,
Vk := {Si ∈ S | P(Si) ∈ Rk} for i ∈ {1, 2, . . . ,m}. The
objective of the GTSP is to find a minimum cost cycle
passing through each nodeset exactly one time.
Noon and Bean Transformation: What follows is a brief
summary of the Noon-Bean transformation from [16] as it
is used in this work. The transformation is best described
in three stages.

The first stage converts the GTSP to a GTSP with
mutually exclusive nodesets. This is done by first elimi-
nating any arcs from A that do not enter at least one new
nodeset. Next, a finite cost α ≥∑(i,j)∈A ci,j is added to
each arc cost for each new nodeset the arc enters. Next,
any nodes that belong to more than one nodeset are
duplicated and placed in different nodesets so as to allow
each node to have membership in only one nodeset. Any
arcs to and from the original nodes are duplicated as
well. In addition, zero cost arcs are added between all
the spawned nodes of each multiple membership node.
The large cost α added to all the other arcs ensures that
all spawned nodes will be visited consecutively, if at all.

The second stage takes the GTSP with mutually exclu-
sive nodesets and eliminates any intraset arcs, leaving a
GTSP in “canonical form.” The third stage of the trans-
formation converts the canonical GTSP to a “clustered”
TSP as follows. The nodes in each nodeset are first
enumerated. Then, a zero cost cycle is created for each
nodeset by adding zero cost edges between consecutive
nodes in each nodeset and connecting the first node
to the last. The interset edges are then shifted so they
emanate from the previous node in its cycle. Finally, the
clustered TSP is converted to an ATSP by adding a finite
cost β ≥∑(i,j)∈A ci,j to each intercluster arc cost.
Modifications for the demonstration: The DTSPN al-
gorithm from above was modified slightly to allow for
waypoint control of the UAV as well as to be more robust
to disturbances such as wind. The first modification of the
routing algorithm reduced the size of the communication
regions in the optimization to ensure that the resulting
path would penetrate the original communication region.
The second modification involved sampling the desired
path to obtain a sequence of waypoints to send to the
UAV autopilot.

IV. RESULTS

We deployed six ToA sensors over a 1.3 km × 0.45
km region shown in Figure 4(a). We created acoustic
events using two propane cannons. The first cannon,
located at (788.3,−445)m in Figure 4(a), was fired 26
times, and the second cannon, placed at (173,−140)m,
was fired 10 times. The event estimates are plotted in
red in Figure 4(a), and the localization errors are shown



in Figure 4(b). The localization errors are less than 16
meters on all the occasions (average errors are 5.05m
and 7.98m respectively), demonstrating the efficacy of the
localization scheme. Additionally, there were numerous
outlier ToAs that the algorithm rejected efficiently.
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Fig. 4. Results of the multiple event localization algorithm. The true
and estimated event locations are shown on the left and the localization
errors are shown on the right.

The route flown by the mule-UAV and the communica-
tion regions used in the DTSPN path planning algorithm
are shown in Figure 5. It took on average two minutes and
fifty seconds for the mule-UAV to complete the circuit and
collect measurements from all ground sensors. This time
is conservative due to the modifications to the algorithm
that ensure that the UAV enters into each communication
region (radius = 200m).

Fig. 5. Path taken by mule-UAV during tests. The desired path was
sent to autopilot via square waypoints. The sensors and communication
regions are represented by green and blue circles respectively.

V. CONCLUSIONS

We have presented the results of a field demonstra-
tion that utilized UAV data mules in conjunction with
sparsely deployed ground sensors to detect, localize, and
verify multiple acoustic events. Algorithms for multiple
event localization and UAV path planning were combined,
and their effectiveness was validated as events were

localized quickly and accurately. A potential next step
is to consider scaling to larger coverage areas where
it would be beneficial to coordinate multiple mule-UAVs.
Another direction of research interest considers fusing
measurements from heterogeneous ground sensors for
multiple source localization.
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